Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
JAMIA Open ; 4(3): ooab077, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1584263

ABSTRACT

OBJECTIVE: We help identify subpopulations underrepresented in randomized clinical trials (RCTs) cohorts with respect to national, community-based or health system target populations by formulating population representativeness of RCTs as a machine learning (ML) fairness problem, deriving new representation metrics, and deploying them in easy-to-understand interactive visualization tools. MATERIALS AND METHODS: We represent RCT cohort enrollment as random binary classification fairness problems, and then show how ML fairness metrics based on enrollment fraction can be efficiently calculated using easily computed rates of subpopulations in RCT cohorts and target populations. We propose standardized versions of these metrics and deploy them in an interactive tool to analyze 3 RCTs with respect to type 2 diabetes and hypertension target populations in the National Health and Nutrition Examination Survey. RESULTS: We demonstrate how the proposed metrics and associated statistics enable users to rapidly examine representativeness of all subpopulations in the RCT defined by a set of categorical traits (eg, gender, race, ethnicity, smoking status, and blood pressure) with respect to target populations. DISCUSSION: The normalized metrics provide an intuitive standardized scale for evaluating representation across subgroups, which may have vastly different enrollment fractions and rates in RCT study cohorts. The metrics are beneficial complements to other approaches (eg, enrollment fractions) used to identify generalizability and health equity of RCTs. CONCLUSION: By quantifying the gaps between RCT and target populations, the proposed methods can support generalizability evaluation of existing RCT cohorts. The interactive visualization tool can be readily applied to identified underrepresented subgroups with respect to any desired source or target populations.

2.
Entropy (Basel) ; 23(9)2021 Sep 04.
Article in English | MEDLINE | ID: covidwho-1390565

ABSTRACT

Access to healthcare data such as electronic health records (EHR) is often restricted by laws established to protect patient privacy. These restrictions hinder the reproducibility of existing results based on private healthcare data and also limit new research. Synthetically-generated healthcare data solve this problem by preserving privacy and enabling researchers and policymakers to drive decisions and methods based on realistic data. Healthcare data can include information about multiple in- and out- patient visits of patients, making it a time-series dataset which is often influenced by protected attributes like age, gender, race etc. The COVID-19 pandemic has exacerbated health inequities, with certain subgroups experiencing poorer outcomes and less access to healthcare. To combat these inequities, synthetic data must "fairly" represent diverse minority subgroups such that the conclusions drawn on synthetic data are correct and the results can be generalized to real data. In this article, we develop two fairness metrics for synthetic data, and analyze all subgroups defined by protected attributes to analyze the bias in three published synthetic research datasets. These covariate-level disparity metrics revealed that synthetic data may not be representative at the univariate and multivariate subgroup-levels and thus, fairness should be addressed when developing data generation methods. We discuss the need for measuring fairness in synthetic healthcare data to enable the development of robust machine learning models to create more equitable synthetic healthcare datasets.

SELECTION OF CITATIONS
SEARCH DETAIL